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Abstract In this paper, a generalization of convexity, namely G-invexity, is considered in
the case of nonlinear multiobjective programming problems where the functions constituting
vector optimization problems are differentiable. The modified Karush-Kuhn-Tucker neces-
sary optimality conditions for a certain class of multiobjective programming problems are
established. To prove this result, the Kuhn-Tucker constraint qualification and the definition
of the Bouligand tangent cone for a set are used. The assumptions on (weak) Pareto optimal
solutions are relaxed by means of vector-valued G-invex functions.

Keywords Multiobjective programming · (weak) Pareto optimal solution · (strictly)
G-invex vector function with respect to η · G-Karush-Kuhn-Tucker necessary optimality
conditions · Kuhn-Tucker constraint qualification

1 Introduction

In the recent years, the analysis of optimization problems with several objectives conflict-
ing with one another has been a focal issue. Such multiobjective optimization problems are
useful mathematical models for the investigation of real-world problems, for example, in
engineering, economics, and human decision making. An optimal solution to such an opti-
mization problem is ordinarily chosen from the set of all (weak) Pareto optimal solutions to it.
Many authors have developed the necessary and/or sufficient optimality conditions for (weak)
Pareto optimality in vector optimization problems (see, for example, [10,15–17,20,22,24],
and others). On the other hand, the duality theory has been another focal issue for a long
time, especially in convex programming.

But in most of such studies an assumption of convexity on the problems was made to
prove the sufficiency of optimality conditions (see, for example, [10,15,22,24]). Recently,
considerable progress has been made to weaken the convexity hypothesis and so to increase
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the class of optimization problems for which the Karush-Kuhn-Tucker necessary optimal-
ity conditions are also sufficient. Therefore, several new concepts concerning a generalized
convex function have been proposed. There is an important contribution in this direction
given by Hanson in [12]. Hanson considered a differentiable function f : X → R, X ⊂ Rn ,
for which there exists an n-dimensional vector function η: X × X → Rn such that, for all
x, u ∈ X , the inequality

f (x) − f (u) ≥ ∇ f (u)η(x, u) (1)

holds. In [8], Craven called functions satisfying (1) invex. Of course, differentiable convex
functions are invex with respect to the function η(x, u) = x − u. After the works of Hanson
[12] and Craven [8], other classes of differentiable nonconvex functions have appeared with
the intent of generalizing the class of invex functions from different points of view. Ben
Israel and Mond [7], Craven and Glover [9], Hanson and Mond [13], Martin [19], Antczak
[1] and many others have studied some properties, applications and further generalizations of
invex functions. One of such generalizations of invex functions is also G-invexity introduced
by Antczak [4] for scalar differentiable functions. He introduced new necessary optimality
conditions for differentiable mathematical programming problem. Antczak also applied the
introduced G-invexity notion to develop sufficient optimality conditions and new duality
results for differentiable mathematical programming problems.

Furthermore, in the natural way, Hanson’s definition of invex functions was also extended
to the case of differentiable vector-valued functions. Therefore, in the recent years, there have
been very popular applications of invexity in multiobjective optimization problems. Craven
and Glover [9] characterized the cone-invexity property, for differentiable functions, in terms
of Lagrange multipliers. They also established Kuhn-Tucker type optimality conditions and
duality theorems for cone invex programs. Jeyakumar and Mond [14] introduced the class
of the so- called V -invex functions to prove some optimality and duality results for a larger
class of differentiable vector optimization problems than under invexity assumption. Giorgi
and Guerraggio [11] introduced some broad classes of generalized invex vector functions for
both in the differentiable and nonsmooth case. Further, they used these notions of generalized
invexity to extend some results of weak efficiency, efficiency and duality. The results estab-
lished by Osuna-Gómez et al. [20] are a generalization for the vectorial case of the results
obtained by Martin [19] in the scalar case. These results characterized invex functions as
those for which their stationary points are global minima. Batista dos Santos et al. [5] also
extended optimality results previously established by Martin [19] in the scalar case to the
vectorial case. Using the (p, r)-invexity as a generalization of invexity in the vectorial case,
Antczak [2] established some optimality and duality results for a larger class of smooth mul-
tiobjective programming problems than invex vector optimization problems. The sufficient
conditions given in [2] improve and extend the results of Singh [22]. The results established
by Jeyakumar and Mond [14] were extended by Antczak [3] to the class of differentiable
multiobjective programming problems involving V -r -invex functions.

This paper represents the first part of study concerning multiobjective programming with
a new class of vector nonconvex functions. In this work, we study the optimality for a
so-called G-multiobjective programming problems. To do this, we define in the paper a new
class of differentiable nonconvex vector valued functions, namely vector G-invex (G-incave)
functions with respect to η. This class of functions is a generalization of G-invex (G-incave)
functions introduced by Antczak [4] for differentiable mathematical programming prob-
lems to the vectorial case. The main purpose of this article is to apply vector G-invexity
to develop optimality conditions for differentiable multiobjective programming problems
with both inequality and equality constraints. Considering the concept of a (weak) Pareto
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solution, we establish the so-called G-Karush-Kuhn-Tucker necessary optimality conditions
for differentiable vector optimization problems under the Kuhn-Tucker constraint qualifica-
tion. Moreover, to prove these necessary optimality conditions for differentiable multiobjec-
tive programming problems, we also use the definition of the Bouligand tangent cone for a
set (in other words, the set of convergence vectors for a set in terminology given by Lin [17]).
The G-Karush-Kuhn-Tucker necessary optimality conditions are weaker than the standard
Karush-Kuhn-Tucker necessary optimality conditions well-known in the literature. Further-
more, based on the introduced G-Karush-Kuhn-Tucker necessary optimality conditions, we
give sufficient optimality for both weak Pareto and Pareto optimality in multiobjective pro-
gramming problems involving G-invex and G-incave functions with respect to the same
function η and with respect to, not necessarily, the same function G. In particular, the suffi-
cient optimality conditions are more useful for some class of vector optimization problems
than the sufficient optimality conditions with vector-valued invex functions. The optimality
results established in the paper are illustrated by a suitable example of a vector optimization
problem involving G-invex (G-incave) functions with respect to the same function η and
with respect to, not necessarily, the same function G.

2 Vector G-invex functions

In this section, we provide some definitions and some results that we shall use in the sequel.
The following convention for equalities and inequalities will be used throughout the paper.

For any x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , we define:

(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n;
(ii) x < y if and only if xi < yi for all i = 1, 2, . . . , n;

(iii) x � y if and only if xi ≤ yi for all i = 1, 2, . . . , n;
(iv) x ≤ y if and only if x � y and x �= y.

Throughout the paper, we will use the same notation for row and column vectors when
the interpretation is obvious.

We say that a vector z ∈ Rn is negative if z � 0 and strictly negative if z < 0.

Definition 1 A function f : R → R is said to be strictly increasing if and only if

∀x, y ∈ R x < y 	⇒ f (x) < f (y).

Now, in the natural way, we generalize the definition of a real-valued G-invex function
introduced by Antczak [4] to the vectorial case.

Let f = ( f1, . . . , fk) : X → Rk be a vector-valued differentiable function defined on a
nonempty open set X ⊂ Rn , and I fi (X), i = 1, . . . , k, be the range of fi , that is, the image
of X under fi .

Definition 2 Let f : X → Rk be a vector-valued differentiable function defined on a non-
empty set X ⊂ Rn and u ∈ X . If there exist a differentiable vector-valued function Gf =(
G f1 , . . . , G fk

) : R → Rk such that any its component Gfi : I fi (X) → R is a strictly increas-
ing function on its domain and a vector-valued function η: X × X → Rn such that, for all
x ∈ X (x �= u) and for any i = 1, . . . , k,

Gfi ( fi (x)) − Gfi ( fi (u)) − G ′
fi

( fi (u)) ∇ fi (u)η(x, u) � 0 (>) , (2)
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then f is said to be a (strictly) vector Gf -invex function at u on X (with respect to η) (or
shortly, G-invex function at u on X ). If (2) is satisfied for each u ∈ X , then f is vector
Gf -invex on X with respect to η.

If a function fi , i ∈ I , satisfies (2), we will also say that fi is Gfi -invex function at u on
X with respect to η.

Remark 3 In order to define an analogous class of (strictly) vector Gf -incave functions with
respect to η, the direction of the inequality in the definition of these functions should be
changed to the opposite one.

Remark 4 In the case when Gfi (a) ≡ a, i ∈ I , for any a ∈ I fi (X), we obtain a definition
of a vector-valued invex function.

Remark 5 In the case when k = 1, we obtain a definition of a scalar G-invex function
introduced by Antczak [4].

Proposition 6 Let X be a nonempty open subset of Rn and the differentiable function f : X →
Rk be surjective and let ∇ f (u) be onto for every u ∈ X, and Gfi : I fi (X) → R, i = 1, . . . , k,
be differentiable real-valued strictly increasing convex functions on their domains. Then,
there exists the vector-valued function η: X × X → Rn such that the function f is Gf -invex
with respect to η.

Proof To show this, let x, u ∈ X, w = fi (x), v = fi (u). Then, by convexity of Gfi , i =
1, . . . , k, we get

Gfi ( fi (x)) − Gfi ( fi (u)) = Gfi (w) − Gfi (v) � G ′
fi
(v)(w − v) (3)

Since ∇ f (u) is onto, then

w − v = ∇ fi (u)η(x, u)

is solvable for some η(x, u) ∈ Rn , where η: X × X → Rn . Hence, by (3), we obtain for
i = 1, . . . , k,

Gfi ( f (x)) − Gfi ( f (u)) � G ′
fi

( fi (u))∇ fi (u)η(x, u).

This means that f is Gf -invex on X with respect to η and Gf = (
G f1 , . . . , G fk

)
. 
�

3 Optimality conditions in multiobjective programming

In general, a multiobjective programming problem is formulated as the following vector
minimization problem:

min f (x) = ( f1(x), f2(x), . . . , fk(x))

x ∈ D,
(VP)

where D is a nonempty set of Rn , and fi denotes a real-valued differentiable function on D.
Before studying optimality in multiobjective programming, one has to define clearly the

concepts of optimality and solutions in multiobjective programming problem. Note that, in
vector optimization problems there is a multitude of competing definitions and approaches.
The dominat ones are now various scalarizations and (weak) Pareto optimality [21]. The
(weak) Pareto optimality in multiobjective programming associates the concept of a solution
with some property that seems intuitively natural.
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Definition 7 A feasible point x is said to be a Pareto solution (an efficient solution) for a
multiobjective programming problem if and only if there exists no x ∈ D such that

f (x) ≤ f (x).

Definition 8 A feasible point x is said to be a weak Pareto solution (a weakly efficient solu-
tion, a weak minimum) for a multiobjective programming problem if and only if there exists
no x ∈ D such that

f (x) < f (x).

As follows from the definition of (weak) Pareto optimality, x is nonimprovable with respect
to the vector cost function f . The quality of nonimprovability provides a complete solution
if x is unique. However, usually this is not the case, and then one has to find the entire exact
set of all Pareto optimality solutions in a multiobjective programming problem.

As it is known [7], a characteristic property of a scalar invex function with respect to η is
the fact that each its stationary point is also its global minimum. It turns out that this property
can be generalized to the class of vector G-invex functions with respect to η. For this purpose,
we have to define adequately the critical point concept for vector-valued functions.

Definition 9 A point u ∈ D is said to be a vector critical point of a vector function f : D →
Rk, D ⊂ Rn , if there exists a vector λ ∈ Rk with λ ≥ 0 such that λT ∇ f (u) = 0.

In [8], Craven proved that every weakly efficient point is also a vector critical point, that is,
the following theorem is true:

Theorem 10 Let x be a weakly efficient solution for (VP). Then, there exists a vector λ ∈ Rk

with λ ≥ 0 such that λ
T ∇ f (x) = 0.

Now, we prove the converse of Theorem 10 using vectorial G-invexity property.

Theorem 11 Let x be a vector critical point for (VP), and let f be a vector G-invex function
at x with respect to η. Then x is a weak Pareto solution for (VP).

Proof Let x be a vector critical point; i.e. there exists λ ∈ Rk with λ ≥ 0 such that
λT ∇ f (x) = 0. We proceed by contradiction. We suppose that x is not a weak Pareto
solution for (VP). Then, there exists another point x̃ ∈ D such that

f (̃x) < f (x) . (4)

By assumption, f is a vector G-invex function at x with respect to η. Then, by Definition 2,
there exists a vector-valued function Gf := (

G f1 , . . . , G fk

) : R → Rk and a vector-valued
function η: D × D → Rn such that (2) is satisfied. As follows from Definition 2, each
function Gfi : I fi (D) → R, i = 1, . . . , k, is a strictly increasing function on I fi (D). This
implies together with (4), for i = 1, . . . , k,

Gfi ( fi (̃x)) < Gfi ( fi (x)) . (5)

Thus, by vector Gf -invexity of f , we have for i = 1, . . . , k,

G ′
fi

( fi (x)) ∇ fi (x) η (̃x, x) < 0.

Therefore,

∇ fi (x) η (̃x, x) < 0.
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Then, by Gordan’s theorem of the alternative [18], the system

λT ∇ f (x) = 0,

λ ∈ Rk, λ ≥ 0,

has no solution for λ. 
�
Hence, for multiobjective problems with G-invex functions, weakly efficient points are

those for which (and only those for which) the gradient vectors of the component functions,
valued at that point, are linearly dependent.

Note that there exist multiobjective optimization problems for which the condition con-
tained in Theorem 10 is only a necessary optimality condition to obtain an efficient solution.

Now, we give some useful characterization of (weak) Pareto optimal solutions. To do this,
we give now the definition of a (weak) minimal element for the given set.

Definition 12 [17] Let W be a given set in Rk ordered by � or by <. Specifically, we call
the minimal element of W defined by ≤ a minimal vector, and that defined by < a weak
minimal vector. Formally speaking, a vector z ∈ W is called a minimal vector in W if there
exists no vector z in W such that z ≤ z; it is called a weak minimal vector if there exists no
vector z in W such that z < z.

The following equivalence is immediate:

Theorem 13 Let x be a feasible solution in a multiobjective programming problem and
let Gfi , i = 1, . . . , k, be a continuous real-valued strictly increasing function defined on
I fi (D). Further, we denote W = {(

G f1 ( f1 (x)) , . . . , G fk ( fk (x))
) : x ∈ D

} ⊂ Rk and
z = (

G f1 ( f1 (x)) , . . . , G f1 ( f1 (x))
) ∈ W . Then, x is a (weak) Pareto solution in the set

of all feasible solutions D for a multiobjective programming problem if and only if the
corresponding vector z is a (weak) minimal vector in the set W .

Now, we consider the following constrained multiobjective programming problem (CVP):

V -minimize f (x) := ( f1(x), . . . , fk(x))

g(x) � 0,

h(x) = 0,

x ∈ X, (CVP)

where fi : X → R, i ∈ I = {1, . . . , k} , g j : X → R, j ∈ J = {1, . . . , m} , ht : X → R, t ∈
T = {1, . . . , p} are differentiable functions on a nonempty open set X ⊂ Rn .

Let D = {x ∈ X : g j (x) � 0, j ∈ J, ht (x) = 0, t ∈ T } be the set of all feasible solutions
for problem (CVP). Further, we denote by J (x) := {

j ∈ J : g j (x) = 0
}

the set of constraint
indices active at x ∈ D and I (x) := {i ∈ I : λi > 0} the objectives indices set for which
corresponding Lagrange multiplier is not equal to 0.

To establish the necessary optimality conditions for the considered multiobjective pro-
gramming problem (CVP), we need the definition of the Bouligand tangent cone to the given
set W ⊂ Rk .

Definition 14 Let W ⊂ Rk . The Bouligand tangent cone to W at z ∈ W is the set C (W, z)
of all vectors q ∈ Rk such that there exist a sequence {zl} in W and a sequence {λl} of strictly
positive real numbers such that,

lim
l→∞zl = z, lim

l→∞λl = 0, lim
l→∞

zl − z

λl
= q.
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Remark 15 Note that Lin [17] named any Bouligand tangent vector, that is, any vector q ∈
C (W, z), a convergence vector for the set W at z.

Now, we give the result established by Lin (see Theorem 5.1 [17]).

Theorem 16 If z ∈ W is locally (weak) minimal vector in the set W ⊂ Rk then no Bouligand
tangent vector for W at z is strictly negative.

In [4], Antczak introduced the so-called G-Karush-Kuhn-Tucker necessary optimality
conditions for differentiable mathematical programming problem. To prove an analogous
result in the vectorial case, we need the Kuhn-Tucker constraint qualification (see, for exam-
ple, [6] and [23] for the present formulation).

Definition 17 Let D be a set of all feasible solutions in the multiobjective programming
problem (CVP) and x ∈ D. The multiobjective programming problem (CVP) is said to
satisfy the Kuhn-Tucker constraint qualification at x if,

C (D, x) = {
d ∈ Rn : ∇g j (x) d � 0, j ∈ J (x) ,∇ht (x)d = 0, t ∈ T

}
,

where C (D, x) represents the Bouligand tangent cone to D at x .

Now, in a natural way, we extend the so-called G-Karush-Kuhn-Tucker necessary optimality
conditions (see [4]) to the vectorial case, that is, for differentiable multiobjective program-
ming problems.

Theorem 18 (G-Karush-Kuhn-Tucker necessary optimality conditions). Let x ∈ D be a
(weak) Pareto optimal point in problem (CVP). Moreover, we assume that Gfi , i ∈ I , is a
differentiable real-valued strictly increasing function defined on I fi (D), Gg j , j ∈ J , is a
differentiable real-valued strictly increasing function defined on Ig j (D), and Ght , t ∈ T , is a
differentiable real-valued strictly increasing function defined on Iht (D) such that the Kuhn-
Tucker constraint qualification is satisfied at x for (CVP). Then, there exist λ ∈ Rk, ξ ∈ Rm

and µ ∈ R p such that

k∑

i=1

λi G
′
fi

( fi (x)) ∇ fi (x) +
m∑

j=1

ξ j G
′
g j

(
g j (x)

) ∇g j (x)

+
p∑

t=1

µt G
′
ht

(ht (x)) ∇ht (x) = 0, (6)

ξ j
[
Gg j

(
g j (x)

) − Gg j

(
g j (x)

)]
� 0, j ∈ J, ∀x ∈ D, (7)

λ ≥ 0, ξ � 0. (8)

Proof By assumption, x ∈ D is a Pareto optimal point (a weak Pareto optimal point)
in problem (CVP). Let d be a Bouligand tangent vector for the set D at x and (xl) is
the corresponding sequence of feasible solutions in (CVP) converging to x and (λl) be
the corresponding sequence of scalars such that λl ≥ 0 for each integer l (see Defini-
tion 14). We denote by W = {(

G f1 ( f1 (x)) , . . . , G fk ( fk (x))
) : x ∈ D

} ⊂ Rk and z =(
G f1 ( f1(x)) , . . . , G fk ( fk(x))

) ⊂ W . Since x ∈ D is a Pareto optimal point
(a weak Pareto optimal point) in problem (CVP) and Gfi , i ∈ I , is a differentiable real-
valued strictly increasing function defined on I fi (D), then z is a (weak) minimal vector in
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the set W (Theorem 13). Further, we consider the sequence of vectors (zl) ⊂ W , where
zl = (

G f1 ( f1(xl)) , . . . , G fk ( fk(xl))
) ∈ W . From the differentiability of fi and Gfi at x ,

we have, for any i ∈ I ,

Gfi ( fi (xl)) − Gfi ( fi (x)) = G ′
fi

( fi (x)) ∇ fi (x) (xl − x) + αi (‖xl − x‖) , (9)

where

αi (‖xl − x‖)
‖xl − x‖ → 0, xl → x .

Now, we find some convergence vector for the set W . By (9), we have, for any i ∈ I ,

zl − z

λl
= 1

λl

⎛

⎜
⎝

⎡

⎢
⎣

Gf1 ( f1(xl))
...

Gfk ( fk(xl))

⎤

⎥
⎦ −

⎡

⎢
⎣

Gf1 ( f1(x))
...

Gfk ( fk(x))

⎤

⎥
⎦

⎞

⎟
⎠

=

⎡

⎢
⎢
⎣

G ′
f1

( f1(x)) ∇ f1(x)

· · ·
G ′

fk
( fk(x))∇ fk(x)

⎤

⎥
⎥
⎦

(xl − x)

λl
+ α (‖xl − x‖)

‖xl − x‖ · ‖xl − x‖
λl

. (10)

By assumption, (xl) is a sequence of feasible solutions in (CVP) converging to x . In view of
differentiability of the functions fi and Gfi , i ∈ I, at x it follows that they are also continuous
functions at x . Therefore, the sequence (zl) ∈ W converges to z = (

Gf1 ( f1(x)) , . . . , Gfk

( fk(x))). Hence, by (10), it follows that

q = lim
l→∞

zl − z

λl
=

⎡

⎢⎢
⎣

G ′
f1

( f1(x)) ∇ f1(x)

· · ·
G ′

fk
( fk(x)) ∇ fk(x)

⎤

⎥⎥
⎦ d (11)

Then, by Definition 14, q is a Bouligand tangent vector for the set W at z.
Since the Kuhn-Tucker constraint qualification is satisfied at x and d is a Bouligand tangent

vector for D at x , then we have

∇g j (x) d � 0, j ∈ J (x) ,

∇ht (x)d = 0, t ∈ T .

By assumption, Gg j , j ∈ J , is a differentiable real-valued strictly increasing function defined
on Ig j (D), and Ght , t ∈ T , is a differentiable real-valued strictly increasing function defined
on Iht (D). Thus,

G ′
g j

(
g j (x)

) ∇g j (x) d � 0, j ∈ J (x) ,

G ′
ht

(ht (x)) ∇ht (x)d = 0, t ∈ T .
(12)

Since z is a (weak) minimal vector in the set W , then, by Theorem 16, there is no Bouligand
tangent vector for the set W at the point z strictly negative. Thus, by (11) and (12), we obtain
the following system

G ′
fi

( fi (x)) ∇ fi (x)d < 0, i ∈ I,
G ′

g j

(
g j (x)

) ∇g j (x)d � 0, j ∈ J (x) ,

G ′
ht

(ht (x)) ∇ht (x)d = 0, t ∈ T,
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which is inconsistent. From Motzkin’s theorem [18], it follows that the system

k∑

i=1

λi G
′
fi

( fi (x)) ∇ fi (x) +
∑

j∈J (x)

ζ j G
′
g j

(
g j (x)

) ∇g j (x)

+
p∑

t=1

µt G
′
ht

(ht (x)) ∇ht (x) = 0, λ ∈ Rk, λ ≥ 0, ζ ∈ R J (x), ζ � 0, µ ∈ R p

is consistent. Let
(
λ, ζ , µ

)
be a solution to the system above. Then, we define ξ ∈ Rm as

follows:

ξ j = ζ j , j ∈ J (x) ,

ξ j = 0, j /∈ J (x) .

Thus, we conclude that
(
λ, ξ, µ

)
satisfies the G-Karush-Kuhn-Tucker necessary optimality

conditions (6)–(8), and so, this theorem is proved. 
�

Before we prove the sufficiency of the G-Karush-Kuhn-Tucker necessary optimality con-
ditions for the considered multiobjective programming problems with functions belonging
to the introduced class of nonconvex functions, we introduce the following denotations of
two set of equality constraints indices. Namely, we denote by T +(x) and T −(x) the sets of
equality constraints indices for which a corresponding Lagrange multiplier is positive and
negative, respectively, that is, T +(x) = {

t ∈ T : µt > 0
}

and T −(x) = {
t ∈ T : µt < 0

}
.

Now, we establish the sufficient optimality conditions for multiobjective programming
problems of such a type. In the first theorem, we assume that the functions constituting the
considered vector optimization problem (CVP) belong to the introduced class of nonconvex
functions. Then we prove that a feasible point x , at which the G-Karush-Kuhn-Tucker neces-
sary optimality conditions are fulfilled, is a weak Pareto optimal point. In the next theorem,
under stronger assumption imposed on the functions constituting problem (CVP), we also
give the sufficient conditions for Pareto optimality.

Theorem 19 Let x be a feasible point for (CVP), Gfi , i ∈ I , be a differentiable real-valued
strictly increasing function defined on I fi (D), Gg j , j ∈ J , be a differentiable real-valued
strictly increasing function defined on Ig j (D), and Ght , t ∈ T , be a differentiable real-valued
strictly increasing function defined on Iht (D), such that the Kuhn-Tucker constraint qualifi-
cation and the G-Karush-Kuhn-Tucker necessary optimality conditions (6)–(8) are satisfied
at x. Further, assume that f is vector Gf -invex with respect to η at x on D, g is vector
Gg-invex with respect to the same function η at x on D, ht , t ∈ T +(x), is Ght -invex with
respect to η at x on D, and ht , t ∈ T −(x), is Ght -incave with respect to η at x on D. Then
x is a weak Pareto optimal point in (CVP).

Proof Suppose, contrary to the result, that x is not a weak Pareto optimal point for (CVP).
Hence, there exists x̃ ∈ D such that

f (̃x) < f (x) . (13)

By assumption, f is Gf -invex with respect to the same function η at x on D. Then, by
Definition 2, there exist functions Gfi : I fi (D) → R, i ∈ I , which are strictly increasing on
their domains. Hence, (13) yields, for any i ∈ I ,

Gfi ( fi (̃x)) < Gfi ( fi (x)) . (14)

123



106 J Glob Optim (2009) 43:97–109

Then, by Definition 2, we have, for any i ∈ I ,

Gfi ( fi (̃x)) − Gfi ( fi (x)) � G ′
fi

( fi (x))∇ fi (x)η(̃x, x), (15)

By (14) and (15),

G ′
fi

( fi (x)) ∇ fi (x)η(̃x, x) < 0. (16)

By assumption, x is such a feasible solution for (CVP), at which the G-Karush-Kuhn-Tucker
necessary optimality conditions are satisfied. Thus, by the G-Karush-Kuhn-Tucker (8) and
(16), it follows that

k∑

i=1

λi G
′
fi

( fi (x)) ∇ fi (x)η(̃x, x) < 0. (17)

By assumption, g is Gg-invex with respect to the same function η at x on D. Then by
Definition 2, we have, for any j ∈ J ,

Gg j

(
g j (̃x)

) − Gg j

(
g j (x)

)
� G ′

g j

(
g j (x)

) ∇g j (x)η(̃x, x). (18)

Thus, by the G-Karush-Kuhn Tucker necessary optimality condition (8), it follows that

ξ j Gg j

(
g j (̃x)

) − ξ j Gg j

(
g j (x)

)
� ξ j G

′
g j

(
g j (x)

) ∇g j (x)η(̃x, x).

Then, the G-Karush-Kuhn-Tucker necessary optimality condition (7) implies

ξ j G
′
g j

(
g j (x)

) ∇g j (x)η(̃x, x) � 0, (19)

and so,
m∑

j=1

ξ j G
′
g j

(
g j (x)

) ∇g j (x)η(̃x, x) � 0. (20)

By assumption, ht , t ∈ T +(x), is Ght -invex with respect to η at x on D, and ht , t ∈ T −(x),
is Ght -incave with respect to η at x on D. Then, by Definition 2, we have,

Ght (h(̃x)) − Ght (h(x)) − G ′
ht

(h(x)) ∇ht (x)η(̃x, x) � 0, t ∈ T +(x),

Ght (h(̃x)) − Ght (h(x)) − G ′
ht

(h(x)) ∇ht (x)η(̃x, x) � 0, t ∈ T −(x).

Thus, for any t ∈ T ,

µt Ght (h(̃x)) − µt Ght (h(x)) − µt G
′
ht

(h(x)) ∇ht (x)η(̃x, x) � 0

Since x̃ ∈ D and x ∈ D, then the inequality above implies

p∑

t=1

µt G
′
ht

(h(x))∇ht (x)η(̃x, x) � 0. (21)

Adding both sides of inequalities (17), (20) and (21), we get the inequality
[∑k

i=1 λi G ′
fi

( fi (x))∇ fi (x) + ∑m
j=1 ξ j G

′
g j

(
g j (x)

) ∇g j (x)

+∑p
t=1 µt G

′
ht

(h(x)) ∇ht (x)
]
η(̃x, x) < 0,

which contradicts the G-Karush-Kuhn-Tucker necessary optimality condition ( 6). Hence, x
is a weak Pareto optimal for (CVP), and the proof is complete. 
�
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Theorem 20 Let x be a feasible point for (CVP). Assume that there exist Gfi , i ∈ I ,
is a differentiable real-valued strictly increasing function defined on I fi (D), Gg j , j ∈ J , is
a differentiable real-valued strictly increasing function defined on Ig j (D), and Ght , t ∈ T ,
is a differentiable real-valued strictly increasing function defined on Iht (D), such that the
Kuhn-Tucker constraint qualification and the G-Karush-Kuhn-Tucker necessary optimality
conditions (6)–(8) are satisfied at x. If f is vector strictly Gf -invex with respect to η at x on
D, g is vector Gg-invex with respect to η at x on D, ht , t ∈ T +(x), is Ght -invex with respect
to η at x on D, and ht , t ∈ T −(x), is Ght -incave with respect to η at x on D, then x is a
Pareto optimal point in (CVP).

Proof Proof for Pareto optimality is similar as the proof of Theorem 19. 
�
Remark 21 Note that to prove Theorem 19 it is sufficient to assume that fi , i ∈ I (x), are
Gfi -invex with respect to the same function η at x on D, gJ (x), j ∈ J (x), are Gg j -invex
with respect to the same function η at x on D in place of f is vector Gf -invex with respect to
η at x on D and g is vector Gg-invex with respect to η at x on D. Also to prove Theorem 20
it is sufficient to assume that fi , i ∈ I (x), are Gfi , invex with respect to the same function η

at x on D, at least one fi , i ∈ I (x), is strictly Gfi , invex with respect to the same function η

at x on D, and gJ (x), j ∈ J (x), are Gg j -invex with respect to the same function η at x on D
in place of f is strictly vector Gf -invex with respect to η at x on D and g is vector Gg-invex
with respect to η at x on D.

Remark 22 Note that if the Lagrange multiplier λ associated with the objective function in
the considered multiobjective programming problem (CVP) is assumed to satisfy λ > 0 then,
to prove Theorem 20, it is also sufficient to assume, in place of strictly Gf -invexity of f ,
that the objective function f is vector Gf -invex with respect to the same function η as other
functions constituting problem (CVP).

Now, we illustrate the optimality results established in the paper by a suitable multiob-
jective programming problem involving vector G-invex functions with respect to the same
function η, but with respect to not the same function G.

Example 1 We now consider the following multiobjective programming problem

min f (x) =
(

ex2−4x , arctan x
)

g(x) = ln
(
x2 − x + 1

)
� 0.

For the above multiobjective programming problem, we have D = [0, 1]. Note that x1 = 0
and x2 = 1 are Pareto optimal solutions in the considered multiobjective programming prob-
lem. It is not difficult to prove, by Definition 2, that f is vector Gf -invex function with
respect to η and g is Gg-invex function with respect to η at x1 = 0 and x2 = 1 on D, where,
for example, η is defined by

η (x, x) = −1

4
x2 + x − x

(
1

2
x + 1 − x + 1

4
x2

)
.

and, moreover,

G f1(t) = 1

2
ln t, G f2(t) = tan t, (22)

Gg(t) = et . (23)
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It is not difficult to verify that the G-Karush-Kuhn-Tucker necessary optimality conditions
(6)–(8) with the functions Gf and Gg and the Kuhn-Tucker constraint qualification are satis-
fied at the feasible points x1 = 0 and x2 = 1. Since all hypotheses of Theorem 20 are fulfilled,
then we can use the sufficient optimality conditions from this theorem to show that x1 = 0
and x2 = 1 are Pareto optimal solutions in the considered multiobjective programming prob-
lem (CVP). Further, note that the sufficient optimality conditions for Pareto optimality valid
for convex vector optimization problems (see, for example, [22]) are not applicable for the
considered multiobjective programming problem (CVP). This follows from the fact that not
all functions involving in the considered multiobjective programming problem are convex.
Also note that the functions constituting the considered multiobjective programming prob-
lem are not invex at x1 = 0 and x2 = 1 on D with respect to the function η defined above.
Therefore, also the sufficient optimality conditions applicable for invex vector optimization
problems are not valid in this case.
As follows from this example, in some cases of differentiable nonconvex vector optimiza-
tion problems, it is in an easier way to find such a vector-valued function η with respect to
which all functions are vector G-invex on D than vector invex on D. Therefore, in some
cases, to prove (weak) Pareto optimality in some classes of differentiable vector optimization
problems, vector G-invexity is more useful than vector invexity notion .

4 Conclusion

This paper represents the first part of a study concerning the so-called G-multiobjective
programming. We have proved new necessary and sufficient optimality conditions for differ-
entiable multiobjective programming problems with both inequality and equality constraints.
It is pointed out that our statement of the so-called G-Karush-Kuhn-Tucker necessary opti-
mality conditions established in this work is more general than the classical Karush-Kuhn-
Tucker necessary optimality conditions found in the literature. Furthermore, we have proved
the sufficiency of the introduced G-Karush-Kuhn-Tucker necessary optimality conditions
for nonconvex multiobjective programming problems. More exactly, this result has been
proved for such multiobjective programming problems in which the objective functions, the
inequality constraints and the equality constraints (for which associated Lagrange multipliers
are positive) are G-invex with respect to the same function η and the equality constraints
(for which associated Lagrange multipliers are negative) are G-incave with respect to the
same function η, but not necessarily with respect to the same function G. We have illustrated
the results proved in the paper by the suitable example of a multiobjective programming
problem involving functions of this type. Moreover, by the help of this example, we have
illustrated also the fact that in some cases, to prove (weak) Pareto optimality in some classes
of differentiable vector optimization problems, vector G-invexity is more useful than other
vector generalized convexity notions.
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